
EFFICIENT SPACETIME MESHING WITH NONLOCAL

CONE CONSTRAINTS

Shripad Thite

Department of Computer Science, University of Illinois at Urbana-Champaign; thite@uiuc.edu

ABSTRACT

Spacetime Discontinuous Galerkin (DG) methods are used to solve hyperbolic PDEs describing wavelike physical
phenomena. When the PDEs are nonlinear, the speed of propagation of the phenomena, called the wavespeed, at any
point in the spacetime domain is computed as part of the solution. We give an advancing front algorithm to construct
a simplicial mesh of the spacetime domain suitable for DG solutions. Given a simplicial mesh of a bounded linear
or planar space domain M , we incrementally construct a mesh of the spacetime domain M × [0,∞) such that the
solution can be computed in constant time per element. We add a patch of spacetime elements to the mesh at every
step. The boundary of every patch is causal which means that the elements in the patch can be solved immediately
and that the patches in the mesh are partially ordered by dependence. The elements in a single patch are coupled
because they share implicit faces; however, the number of elements in each patch is bounded. The main contribution
of this paper is sufficient constraints on the progress in time made by the algorithm at each step which guarantee that
a new patch with causal boundary can be added to the mesh at every step even when the wavespeed is increasing
discontinuously. Our algorithm adapts to the local gradation of the space mesh as well as the wavespeed that most
constrains progress at each step. Previous algorithms have been restricted at each step by the maximum wavespeed
throughout the entire spacetime domain.

Keywords: mesh generation, unstructured meshes, advancing front, partial differential equations,
discontinuous Galerkin, nonlinear hyperbolic PDE

1. INTRODUCTION

Simulation problems in mechanics consider the behav-
ior of an object or region of space over time. Scien-
tists and engineers use conservation laws and hyper-
bolic partial differential equations (PDEs) to model
transient, wavelike phenomena propagating over time
through the domain of interest. Example applications
are numerous, including, for instance, the equations of
elastodynamics in seismic analysis and the Euler equa-
tions for compressible gas dynamics. Closed-form so-
lutions are typically unavailable for these problems, so
analysts usually resort to numerical approximations.

Finite element methods (FEM) are popular options
for solving this class of problems. In the standard
semi-discrete approach, a finite element mesh dis-
cretizes space to generate a system of ordinary dif-

ferential equations in time that is then solved by a
time-marching integration scheme. Most semi-discrete
methods impose a uniform time step size over the en-
tire spatial domain, i.e., the time step does not adapt
to the local gradation of the space mesh. Therefore,
the resulting spacetime mesh consists of many more
elements than required by physical causality. Hence,
algorithms that use a nonuniform time step size can
substantially improve computational efficiency.

Spacetime discontinuous Galerkin (DG) methods have
been proposed by Richter [8], Lowrie et al. [7], and Yin
et al. [11] for solving systems of nonlinear hyperbolic
partial differential equations. Like traditional finite
element methods, spacetime DG methods use basis
polynomials to approximate the solution within each
element; however, unlike traditional FEM methods,
these basis polynomials have local support restricted

to each element and the basis polynomials of adjacent
elements do not have to agree on their common inter-
section. This approach eliminates artificial coupling
between adjacent elements when the mesh satisfies cer-
tain causality constraints. (For further background on
general discontinuous Galerkin methods, we refer the
reader to Cockburn, Karniadakis, and Shu [3].)

Üngör and Sheffer [10] and Erickson et al. [4] devel-
oped the first algorithm, called ‘TentPitcher’, to build
graded spacetime meshes over arbitrary simplicially
meshed spatial domains, suitable for spacetime DG so-
lutions. Unlike most traditional approaches, the Tent-
Pitcher algorithm does not impose a fixed global time
step on the mesh, or even a local time step on small
regions of the mesh. Rather, it produces a fully un-
structured simplicial spacetime mesh, where the dura-
tion of each spacetime element depends on the local
feature size and quality of the underlying space mesh.

Efficient spacetime meshing relies on the notion of the
domain of influence and the domain of dependence of
an event. Imagine dropping a pebble into a pond—
circular waves propagate outwards from the point of
impact. The frontier of expanding waves sweeps out
a cone in spacetime called the domain of influence of
the event. The radius of the domain of influence at
any time is the radius of the circular disc consisting
of all points on the surface where the initial wave has
arrived. The domains of influence and dependence can
be approximated by right circular cones with common
apex P (Figure 1). The symmetric double cone rep-
resenting the domains of influence and dependence at
points P in spacetime can be described by a scalar field
ω where ω(P) = ∂r/∂t, the wavespeed at P , specifies
how quickly the radius r of domains of influence and
dependence of P grows as a function of time. Smaller
values of ω(P), i.e., steeper cones, correspond to slower
wavespeeds. The wavespeed ω(P) at a point in space-
time is, in general, part of the solution of the PDE
at that point. The slope of the cones of influence and
dependence of P , denoted by σ(P), is the reciprocal of
the wavespeed—larger slopes mean steeper cones and
therefore slower wavespeeds, and smaller slopes mean
shallower cones and faster wavespeeds.

Given a simplicial mesh of some bounded domain
M ⊂ R

d, the Tent Pitcher algorithm incrementally
constructs a simplicial mesh of the spacetime domain
using an advancing front method. The spacetime do-
main is the subset M × [0,∞) ⊂ R

d+1, a subset of
Euclidean space one dimension higher. The algorithm
progresses by adding simplices to the evolving mesh
in small patches by moving a vertex of the front for-
ward in time. The inflow and outflow boundaries of
each patch (Figure 2) are causal by construction, i.e.,
each boundary facet F separates the cone of influence
from the cone of dependence of any point on F (Fig-

ure 1). Equivalently, for every point P on F we have
‖∇F‖ ≤ 1/ω(P) = σ(P). If the outflow boundaries of
a patch are causal, every point in the patch depends
only on other points in the patch or points of inflow el-
ements adjacent to the inflow boundaries of the patch.
Therefore, the solution within the patch can be com-
puted as soon as the patch is created, given only the
inflow data from adjacent inflow elements. The ele-
ments within a patch are causally dependent on each
other and must be solved as a coupled system. Pro-
vided the space mesh has constant degree, each patch
contains only a constant number of elements and can
therefore be solved in constant time. Therefore, the
computation time required to compute the numerical
solution is linear in the number of spacetime elements.
Patches with no causal relationship can be solved in-
dependently. To minimize undesirable numerical dis-
sipation and the number of patches, we would like the
boundary facets of each patch to be as close as possible
to the causality constraint without violating it.

The causality constraint limits the progress in time
at each step, i.e., the height of each tentpole is con-
strained. For spatial domains of dimension d ≥ 2, it is
not trivial to guarantee that the advancing front algo-
rithm can always make progress. We require that for
any target time value T the algorithm will compute
a mesh of the spacetime volume M × [0, T] and the
solution everywhere in this volume in finitely many
steps. The target time T is not known a priori be-
cause it depends on the evolving physics. The original
Tent Pitcher algorithm proposed by Üngör and Shef-
fer [10] applied to one- and two-dimensional space do-
mains. The algorithm could guarantee progress only
if the input triangulation contained only angles less
than 90 degrees and if the wavespeed did not increase
or increased smoothly. Erickson et al. [4] extended
Tent Pitcher to arbitrary spatial domains in any di-
mensions by imposing additional constraints, called
progress constraints. The progress constraint applied
to a single simplex on the front limits the amount of
progress in time when some vertex of the simplex is
pitched. The progress constraint is a function of the
shape of the simplex. The geometric constraints that
limit the height of each tentpole are called cone con-
straints.

All the results so far have applied to the case where
the wavespeed at a given point is either constant, de-
creasing, or increasing smoothly as a Lipschitz func-
tion. (See Alper Üngör’s PhD thesis [9] for the details.)
When the wavespeed changes, the previous algorithms
take the fastest that the wavespeed can ever be and
use that as a conservative upper bound on the wave-
speed at any time. One would like an algorithm that
adapts to increasing wavespeeds so that fewer space-
time elements, and therefore less computation time,
are required to mesh a given volume.

In this paper, we give an advancing front algorithm
to construct a spacetime mesh over an arbitrary lin-
ear or planar space mesh (d ≤ 2). Our algorithm
extends TentPitcher to the case when the wavespeed
can be an arbitrary scalar field over the spacetime do-
main. In particular, our algorithm guarantees finite
positive progress at each step even when the wave-
speed at a given point increases discontinuously and
unpredictably over time.

The main contributions of this paper are twofold. We
give a novel characterization of fronts that are al-
ways guaranteed to progress, which we call progressive
fronts, and give a lower bound on the progress guaran-
tee at each step which depends only on the local size of
the mesh and the wavespeed that most constrains the
duration of the current patch. The minimum progress
guarantee at any step is a positive quantity bounded
away from zero, so the front is guaranteed to progress
past any target time in a finite number of steps. The
second contribution of this paper is to give geomet-
ric constraints on the front at any step that guarantee
that the front can progress in the next step and so on
inductively at every step. The geometric constraints
are simple to express and to compute. Intuitively, the
geometric constraints that apply at any given itera-
tion of the algorithm are predicted by looking ahead
at the next iteration of the algorithm. We also give an
efficient algorithm to maximize the progress at every
step subject to these constraints. The novelty of our
characterization of progressive fronts and of our algo-
rithm is that we resolve the following conundrum. The
progress of the front at each step i is limited by the
progress constraint that must be satisfied by the next
front at step i + 1. However, we do not know what is
the next front unless we know how much progress is
possible at step i.

The paper by Erickson et al. [4] contains an error in
the statement of the causality constraint when obtuse
triangles are involved; therefore, their proof of correct-
ness is incomplete because it omits the obtuse angle
case. While their proof can be fixed, we prefer our
new algorithm, which is provably correct even when
the wavespeed is constant or does not increase. Our
new progress constraints are potentially weaker than
those of Erickson et al. [4].

Our algorithm is the first algorithm to build space-
time meshes over arbitrary planar triangulated spa-
tial domains suitable for solving nonlinear hyperbolic
PDEs, where the wavespeed at any point in spacetime
depends on the solution and cannot be computed in
advance. Moreover, the solution can change discontin-
uously, for instance when a shock propagates through
the domain.

The input to our advancing front algorithm is a simpli-
cially meshed bounded domain M ⊂ R

d where d ≤ 2

tim
e

Figure 1: A causal face separates the cones of influence
and dependence at every point on the face.

outflow faces

tentpole

implicit
faces

inflow
faces

old
front

new
front

Figure 2: A vertical cross-section of a patch of tetrahe-
dra; the inflow and outflow faces are causal.

and the initial conditions of a nonlinear hyperbolic
PDE. The space mesh describes the situation at time
equal to zero, specifically, the slope at every point in M
at time zero. We allow more general initial conditions
but we will postpone a description of those conditions
until later sections. Our meshing algorithm is an ad-
vancing front procedure which alternately constructs
a new patch of elements and invokes a spacetime DG
finite element method to compute the solution within
that patch. At every iteration, the front is the graph of
a continuous piecewise linear time function t : M → R.
The front t is linear within every simplex of M and
‖∇ t(p)‖ ≤ σ(p) for every point p ∈ M . The front is a
terrain whose facets correspond to simplices in the un-
derlying space mesh. Each facet of the front coincides
with the outflow face of a patch in the past and the in-
flow face of a patch in the future. We say that a front
is causal if every simplex of the front is causal. To ad-
vance the front t, the algorithm chooses an arbitrary
vertex P = (p, t(p)) from the front and lifts it to a new
point P ′ = (p, t′(p)) where t′(p) > t(p) and for every
other vertex q we have t′(q) = t(q). The spacetime
volume between the new front t′ and the old front t is
called a tent. The tent is meshed with simplices shar-
ing the edge (P, P ′) called the tentpole. The height of
the tentpole is the duration t′(p) − t(p). Consider a
planar space mesh M . For each triangle pqr incident
on p, the tetrahedron P ′PQR belongs to the patch.
The outflow face P ′QR and the inflow face PQR are
causal boundaries. The triangles P ′PQ and P ′PR are
implicit faces. Since the implicit faces are vertical they

are not causal boundaries and so elements within the
patch are coupled. The elements below the front t
whose outflow faces intersect any of the inflow faces of
the new patch are inflow elements. We pass the newly
constructed patch along with all its inflow elements to
a DG solver. The DG solver returns as part of the
solution the slope at every point on every outflow face
of the patch. The new front t′ and the output of the
DG solver are the input to the next iteration of the
algorithm.

Since we are interested in causal fronts only, hence-
forth it is implicit that every front considered is causal.

We assume that the slope at any point P is bounded
by the minimum and the maximum slopes anywhere
in the cone of dependence of P . Hence, given a front t
and a point P in the future, the slope at P is no smaller
than the slope at Q for every point Q on the front t
such that P is in the cone of influence of Q.

It can be computationally very expensive to determine
the shallowest cone of influence that contains a given
point P . In particular, the shallowest cone of influence
containing P may correspond to a nonlocal point Q,
one arbitrarily distant from P . To compute this non-
local cone constraint efficiently, we use a standard hi-
erarchical decomposition, called a bounding cone hi-
erarchy, of the space domain. The elements in the
hierarchy correspond to subsets of the space domain.
For each element of the hierarchy, we compute the
minimum slope within the corresponding subset of the
space domain. The smallest element in the hierarchy
is a single simplex. In order to determine the strictest
cone constraint that applies locally, we traverse the
hierarchy until we determine the simplex with min-
imum slope whose cone of influence contains P . In
practice, we expect that our algorithm has to exam-
ine only a small subset of the hierarchy. In the worst
case, the algorithm has to examine every simplex of the
front but in that case the algorithm will be at most a
constant factor slower than one that does not use a
bounding cone hierarchy. When a patch is solved, the
bounding cones are updated with the new slopes by
traversing a path from a leaf to the root of the hier-
archy. This hierarchical approximation technique has
been applied very successfully to numerous simulation
problems, such as the Barnes-Hut divide-and-conquer
method [2] for N -body simulations, as well as to colli-
sion detection in computer graphics and robot motion
planning [6] and for indexing multi-dimensional data
in geographic information systems [5].

1.1 Notation

We use lowercase letters like p, q, r to denote points
in space and uppercase letters like P , Q, R to denote
points in spacetime. A front t is a piecewise linear

function t : M → R. For a simplex (of any dimensions)
τ of M , let t|

τ
denote the time function t restricted to

τ and extended to the affine hull of τ ; in other words,
t|

τ
is a linear function that coincides with t for every

point of τ . Let ti : M → R denote the front after
the ith step of the algorithm; t0 is the initial front.
For every i, the front ti is a terrain whose facets are
the simplices of M . In other words, ti is a piecewise
linear function such that for every simplex τ of M , the
functions ti and ti|τ coincide at the vertices of τ .

For a time function t : M → R we denote the gradient
of t by ∇ t. A local minimum of the front t is a vertex p
such that t(p) ≤ t(q) for every vertex q that is a neigh-
bor of p. When the current front t is clear from the
context, for every point p ∈ M we use P to denote the
corresponding point on the front, i.e., P = (p, t(p)).

For a point P in spacetime, we use σ(P) to de-
note the reciprocal of the wavespeed at P . Let
σmin denote minP∈M×[0,∞){σ(P)} and σmax denote
maxP∈M×[0,∞){σ(P)}. We assume that 0 < σmin ≤
σmax < ∞. For a simplex τ in spacetime, we use σ(τ)
to denote the minimum of σ(P) over all points P in τ .

We say that a front t′ is obtained by advancing a ver-
tex p of M by δt ≥ 0 if t′(p) = t(p) + δt and for every
other vertex q 6= p we have t′(q) = t(q). For any front
t, vertex p, and real δt ≥ 0, let t′ = next(t, p, δt) de-
note the front obtained from t by advancing p by δt.

1.2 Problem statement

The input to our problem is the initial front t0 and the
initial conditions of the PDE. We want an advancing
front algorithm such that for every T ∈ R

≥0 there
exists a finite integer k ≥ 0 such that the front tk after
the kth iteration of the algorithm satisfies tk ≥ T .

We say that a front t is valid if there exists a posi-
tive real δ bounded away from zero such that for ev-
ery T ∈ R

≥0 there exists a sequence of fronts t, t1,
t2, . . ., tk where tk ≥ T , each front in the sequence
obtained from the previous front by advancing some
vertex by δ. What makes the definition of a valid front
nontrivial is the requirement that all fronts be causal.
The main difficulty in characterizing valid fronts arises
when the wavespeed at a given point in the space do-
main increases discontinuously and unpredictably over
time.

Our solution We define progressive fronts and prove
that if a front is progressive then it is valid. We give
an algorithm that given any progressive front ti con-
structs a next front ti+1 such that ti+1 is progressive.
The volume between ti and ti+1 is partitioned into sim-
plices. The next front ti+1 is obtained by lifting a local
minimum of ti by a positive amount bounded away
from zero. The algorithm can easily be parallelized

to solve several patches asynchronously by lifting any
independent set of vertices in parallel. Whenever the
algorithm chooses to lift a local minimum, it is guar-
anteed to be able to lift it by at least Tmin > 0 which is
a function of the input and bounded away from zero.

2. ONE-DIMENSIONAL SPACE
DOMAINS

We begin by describing our algorithm to construct
spacetime meshes over one-dimensional space do-
mains. Even this simple case captures all but one as-
pect of the complexity of guaranteeing causality when
wavespeeds are changing.

The space domain M is a closed interval of the real
line. The input space mesh is a subdivision of this
interval into segments. Let V (M) denote the set of
vertices of the space mesh M . The initial front t0 cor-
responds to t0(p) = 0 for every vertex p of the space
mesh, but more generally, any (causal) front can be
the initial front. Let wmin denote the minimum length
of any segment in the space mesh. Let σmin denote the
minimum slope σ(P) over every point P in the space-
time domain M × [0,∞). Let Tmin denote σminwmin.

In iteration i + 1 of our advancing front algorithm
(i ≥ 0), we advance a single vertex p, where p is a
local minimum of the current front ti, to get the new
front ti+1, i.e., ti+1 = next(t, p, δt). More generally, we
can advance any vertex or an independent set of ver-
tices, not necessarily local minima, forward in time.
The value of ti+1(p) is bounded from above by the
requirement that ti+1 be causal.

Let AB be an arbitrary segment of the front ti+1.
Without loss of generality, assume ti+1(a) ≤ ti+1(b).
Then, AB is causal if and only if the gradient of the
time function ti+1 restricted to ab is at most the slope
σ(AB), i.e., if and only if

‖∇ ti+1|ab
‖ =

ti+1(b) − ti+1(a)

|ab| ≤ σ(AB). (1)

Theorem 1. Let ti be a front and let p be an arbitrary
local minimum of ti. Then, for every δt ∈ [0, Tmin] the
front ti+1 = next(ti, p, δt) is causal.

Proof. Only the segments of the front incident on P
advance along with p. Consider an arbitrary segment
pq incident on p. Let t and t′ denote ti|pq

and ti+1|pq

respectively. We have t(p) + δt ≤ t(p) + σminwmin ≤
t(q)+|pq|σ(P ′Q) because p is a local minimum, wmin ≤
|pq|, and σmin ≤ σ(P ′Q). Therefore, the segment P ′Q
is causal. Since this is true of an arbitrary segment
on the front t′, we have proved that that the front
ti+1 = next(ti, p, δt) is causal.

Theorem 2. For any i ≥ 0, if the front ti is causal
then ti is valid.

Proof. Consider step i + 1 of the algorithm. By The-
orem 1 the front ti+1 such that ti+1(p) ∈ [0, Tmin]
is causal. Therefore, we have shown that if ti is
causal then there is a front ti+1 = next(ti, p, Tmin)
such that ti+1 is causal. Note that

P

p∈V (M) ti+1(p) =

Tmin +
P

p∈V (M) ti(p). By induction on i, and because
σmax is finite and M is bounded, there exists a finite
k ≥ i such that the front tk satisfies

X

p∈V (M)

tk(p) ≥ diam(M)σmaxT

for any real T . Since tk is causal

„

max
p∈V (M)

tk(p)

«

≤ diam(M)σmax

„

min
p∈V (M)

tk(p)

«

.

Therefore, minp∈V (M) tk(p) ≥ T and so ti is valid.

2.1 Being greedy at every step

We would like to maximize the progress at each step
in a greedy fashion, i.e., given a front ti we would
like to maximize ti+1(p) where ti+1 = next(ti, p, δt)
subject to the constraint that ti+1 is causal. By The-
orem 2, we can have ti+1(p) ≥ ti(p) + Tmin. However,
it may be possible to make further progress by setting
ti+1(p) higher, especially if each segment PQ incident
on p each satisfies progress constraint [σprev] for some
σprev < σ(P ′Q) at the end of the previous iteration.

For a fixed segment pq incident on p let T i+1
sup denote

sup {T : P ′Q is causal where P ′ = (p, T)}. To max-
imizing the progress at step i + 1, we would like to
compute T i+1

sup . The segment P ′Q is causal if and only
if the slope of P ′Q is less than or equal to the slope of
the cone of influence from every point on the front that
intersects P ′Q. A cone of influence intersects P ′Q if
and only if the cone intersects the tentpole PP ′. In
general, a cone of influence from arbitrarily far away
can intersect the tentpole at p. See Figure 3. This
is not the case when the wavespeed everywhere is the
same. Therefore, in general, T i+1

sup could be determined
by a cone of influence of a point arbitrarily distant
from p.

Partition the front into two subsets of points:
(i) points in the star of P (“local” points), and
(ii) points everywhere else on the front (“remote”
points). Corresponding to each subset we have
two disjoint subsets of cones of influence—Clocal and
Cremote respectively. Each subset of cones limits the
new time value of p and so the final time value is the
smaller of the two values for each of Clocal and Cremote

taken separately.

Figure 3: Top to bottom: a sequence of tent pitch-
ing steps in 1D×Time. Maximizing the height of each
tentpole while staying below every cone of influence can
require examining remote cones arbitrarily far away.

Consider the subset Clocal. Let σlocal denote the small-
est slope among all cones of influence in Clocal The
segment P ′Q is causal only if its slope is less than or
equal to σlocal. Let Tlocal be the maximum time value
of P ′ for which the slope of P ′Q is less than or equal
to σlocal. The maximum Tlocal exists because the set
of feasible values is closed and therefore compact. To
compute Tlocal we substitute σlocal in the condition for
causality of P ′Q (Equation 1).

Next consider the subset Cremote. The front ti is
strictly below every cone in Cremote because ti is causal.
The segment P ′Q is causal only if it is also strictly be-
low every cone in Cremote. Given a cone C ∈ Cremote, C
intersects P ′Q if and only if C intersects the tentpole
PP ′. Let Tremote denote the smallest time value T for
which the tentpole PP ′ where P ′ = (p, T) intersects
exactly one cone in Cremote. The segment P ′Q is causal
only if T < Tremote. Note that the upper bound on T
imposed by remote cones is a strict inequality.

Therefore, the progress ti+1(p) − ti(p) at step i + 1
is limited because T i+1

sup = max{Tlocal, Tremote}. To
maximize the progress at the current step, we choose
ti+1(p) equal to T i+1

sup minus the machine precision η,
or ti(p) + Tmin, whichever is larger.

Computing Tremote exactly Computing Tremote

is equivalent to answering a ray shooting query in the
arrangement of the cones in Cremote. We use a bound-
ing cone hierarchy H obtained from a hierarchical de-
composition of the space domain to efficiently answer
the ray shooting query. The hierarchical decompo-
sition of the space domain induces a corresponding
hierarchical decomposition of every front. For each el-
ement of this hierarchy, we store a right circular cone
that bounds the cone of influence of every point of the
corresponding subset of the front. To answer the ray
shooting query, we traverse the cone hierarchy from
top to bottom starting at the root. At every stage,
we store a subset C of bounding cones such that every
cone in Cremote is contained in some cone in the subset
C. The cones in C are stored in a priority queue in
non-decreasing order of the time value at which the
vertical ray at P intersects each cone. Initially, C con-
sists solely of the cone at the root of the hierarchy.
At every stage, if the cone in C that has the earliest
intersection does not come from a leaf in the hierar-
chy then we replace it in the priority queue with its
children. Continuing in this fashion, we eventually de-
termine the single facet of the front such that the cone
of influence from some point on this facet is intersected
first by the vertical ray at P . The time coordinate of
the point of intersection is Tremote, the answer to the
ray shooting query.

If the hierarchy is balanced its depth is O(log m) where
m is the number of simplices in the space mesh. In

1D×Time, we observed empirically that on average
only a few nodes in the cone hierarchy were examined
by this algorithm to determine the most constraining
cone of influence.

Approximating Tremote Since we know a range of
values [ti(p)+Tmin, Tlocal] that contains Tremote, we can
approximate Tremote up to any desired numerical accu-
racy by performing a binary search in this interval. At
every iteration, we speculatively lift P to the midpoint
of the current search interval. Let P ′′ be the specula-
tive top of the tentpole at P . We query the cones of
influence in Cremote to determine the minimum slope
σremote among all cones that intersect PP ′′. If the
maximum slope of the outflow faces incident on P ′′ is
less than σremote then we can continue searching in the
top half of the current interval; otherwise, the binary
search continues in the bottom half of the current in-
terval. The search terminates when the search interval
is smaller than our desired accuracy. A bounding cone
hierarchy helps in the same manner as before to de-
termine the minimum slope among all cones in Cremote

that intersect PP ′′.

Theorem 3. Given a simplicial mesh M of a bounded
real interval where wmin is the minimum length of
a simplex of M and σmin is the minimum slope
anywhere in M × [0,∞) our algorithm constructs
a simplicial mesh of M × [0, T] consisting of at

most
l

2 diam(M) σmax

σminwmin
T
m

spacetime elements for every

real T ≥ 0.

Proof. In Theorem 1, we have shown that the height of
each tentpole constructed by the algorithm is at least
Tmin = σminwmin. By Theorem 2, after constructing

at most k ≤
l

diam(M) σmax

Tmin

T
m

patches, the entire front

tk is past the target time T . Since each patch consists
of at most two elements, the theorem follows.

We have shown that every causal front in 1D×Time is
valid. In higher dimensions, additional progress con-
straints are necessary.

3. PLANAR SPACE DOMAINS

In this section, we describe our algorithm for d = 2,
i.e., for a triangulated planar space domain M ⊂ R

2.

For planar domains, we encounter nontrivial progress
constraints that are necessary to guarantee sufficient
progress at each step, i.e., to guarantee that the height
of the tentpole constructed at every step is positive
and bounded away from zero. In the absence of such
constraints, it was shown by Üngör and Sheffer [10],
and by Erickson et al. [4] that if the space mesh con-
tains an obtuse or a right triangle then Tent Pitcher

will eventually construct a front such that no further
progress is possible while maintaining causality. Er-
ickson et al. [4] derived additional progress constraints
that were sufficient to guarantee progress, even in the
presence of obtuse angles, however only by assuming
the minimum slope occurs everywhere in spacetime.
In this section, we show how to relax these progress
constraints so that they adapt to the slope of the
most constraining cone of influence at every step. Our
progress constraint is a function of the slope encoun-
tered locally in the next step of the algorithm, which
may be substantially less constraining than the glob-
ally minimum slope.

Fix a real parameter ε ∈
`

0, 1
2

˜

. The space domain M
is a triangulation of a bounded subset of the plane R

2.
Let wmin denote the minimum width of any triangle of
the space mesh. Let σmin denote the minimum σ(P)
over every point P in the spacetime domain M×[0,∞).
Let Tmin denote εσminwmin.

Definition 1 (Progress constraint σ). Let PQR
be an arbitrary triangle of a front t. Without loss of
generality, assume t(p) ≤ t(q) ≤ t(r). We say that
the triangle PQR satisfies progress constraint σ if and
only if

‖∇ t|
qr
‖ :=

t(r) − t(q)

|qr| ≤ (1 − ε)σφp

where φp = max {sin ∠prq, sin ∠pqr}. Note that 0 <
φp ≤ 1.

Suppose the lowest vertex p is being advanced. As
long as p is the lowest vertex of 4pqr, the progress
constraint limits ‖∇ t|

qr
‖ but ‖∇ t|

qr
‖ is unchanged

by lifting p. When t(p) > t(q), the new lowest vertex
is q, so the progress constraint limits ‖∇ t|

rp
‖. (We

can interpret the progress constraint inductively as a
causality constraint on the 1-dimensional facet pr op-
posite q where the relevant slope is (1 − ε)σφq.)

Definition 2 (Progressive). Let t be a front and
let pqr be a given triangle. Without loss of generality,
assume t(p) ≤ t(q) ≤ t(r). We say that the triangle
PQR is progressive if and only if both of the following
conditions are satisfied by P ′QR where P ′ = (p, t(p)+
δt) for every δt ∈ [0, Tmin]:

1. P ′QR is causal, and

2. P ′QR satisfies progress constraint σ(P ′Q′R)
where Q′ = (q, t(q) + Tmin).

We say that a front t is progressive if every triangle on
the front is progressive. Note that every progressive
triangle or front is also causal.

3.1 A new advancing front algorithm

We are now ready to describe iteration i + 1 of our
advancing front algorithm for i ≥ 0. Advance a sin-
gle vertex p by a positive amount, where p is any lo-
cal minimum of the current front ti, to get the new
front ti+1 such that for every triangle pqr incident on
p the corresponding triangle on the new front ti+1 is
progressive. In the parallel setting, advance any in-
dependent set of local minima forward in time, each
subject to the above constraint. The value of ti+1(p)
is constrained from above separately for each of the
simplices incident on p. The final value chosen by the
algorithm must satisfy the constraints for each such
triangle. Therefore, it is sufficient to consider each
triangle pqr incident on p separately while deriving
the causality and progress constraints that apply while
pitching p.

Next, we derive simple formulæ for the causality and
progress constraints for a given triangle pqr when p is
being pitched. Let t and t′ denote ti|pqr

and ti+1|pqr

respectively.

Let ~nqr denote the unit vector normal to qr such
that ~nqr ·(~p−~q) > 0. Let ~vqr be the unit vector parallel
to qr such that ~vqr · (~r−~q) > 0. Then, {~nqr, ~vqr} form
a basis for the vector space R

2. Let ~nrp denote the
unit vector normal to pr such that ~nrp · (~q − ~p) > 0.
Let ~vrp be the unit vector parallel to rp such that
~rp · (~p − ~r) > 0. Then, {~nrp, ~vrp} form another basis
for the vector space R

2.

The gradient vector ∇ t′ can be written as

∇ t′ = (∇ t′ · ~nqr)~nqr + ∇ t′
˛

˛

qr

where

∇ t′
˛

˛

qr
= (∇ t′ · ~vqr)~vqr

Lifting p does not change the gradient of the time func-
tion restricted to the opposite edge, so ∇ t′ · ~vqr =
∇ t · ~vqr, i.e., ∇ t′|

qr
= ∇ t|

qr
. Since q is the lowest

vertex of qr, we have ∇ t′ · ~vqr = ∇ t · ~vqr ≥ 0.

Also,

∇ t′ = (∇ t′ · ~nrp)~nrp + ∇ t′
˛

˛

rp

where

∇ t′
˛

˛

rp
= (∇ t′ · ~vrp)~vrp

The vectors ~nqr and ~nrp are related by a rotation
around the origin by angle θ. Since 0 < θ < π we
have cos θ = ~nqr · ~nrp and sin θ =

p

1 − (~nqr · ~nrp)2.
Hence,

‖∇ t′
˛

˛

rp
‖ = ‖∇ t|

qr
‖ cos θ + (∇ t′ · ~nqr) sin θ

= ‖∇ t|
qr
‖(~nqr · ~nrp)

+ (∇ t′ · ~nqr)
p

1 − (~nqr · ~nrp)2 (2)

p

ru q

p

q ru

p

rq u

(a) (b) (c)

Figure 4: Triangle pqr where t(p) ≤ t(q) ≤ t(r)

Deriving the causality constraint Let u be the
orthogonal projection of p onto line qr. Since lifting p
does not change the time function restricted to qr, we
have t′|

qr
= t|

qr
. The scalar product ∇ t′ · ~nqr can be

written as

∇ t′ · ~nqr =
t′(p) − t(u)

|up|
Since q is the lowest vertex of qr and since PQR is
progressive, we have 0 ≤ ∇ t′ · ~vqr = ∇ t · ~vqr ≤
(1 − ε)σ(P ′QR) < σ(P ′QR). Therefore, ‖∇ t′‖ ≤
σ(P ′QR) if and only if

t′(p) − t(u)

|up| ≤
q

σ(P ′QR)2 − ‖∇ t|
qr
‖2 (3)

Deriving the progress constraint Let σprog de-
note σ(P ′Q′R) where P ′ = (p, t′(p)) and Q′ =
(q, t(q)+Tmin). By Equation 2, the triangle P ′QR sat-
isfies the progress constraint ‖∇ t′|

rp
‖ ≤ (1−ε)σprogφq

if and only if

∇ t′ · ~nqr ≤
(1 − ε)σprogφq − ‖∇ t|

qr
‖(~nqr · ~nrp)

p

1 − (~nqr · ~nrp)2

Therefore, the progress constraint is

t′(p)−t(u)
|up|

≤ 1√
1−(~nqr·~nrp)2

(1 − ε)σ(P ′Q′R)φq

− ~nqr·~nrp√
1−(~nqr·~nrp)2

‖∇ t|
qr
‖

(4)

3.2 Proof of correctness

In this section, we prove the correctness of our algo-
rithm, i.e., that every front constructed by the algo-
rithm is valid.

Theorem 4. If a front ti is progressive, then for any
local minimum vertex p and for every δt ∈ [0, Tmin] the
front ti+1 = next(ti, p, δt) is causal.

Proof. Since only the triangles of the front incident
on P advance along with p, we can restrict our atten-
tion to an arbitrary triangle pqr incident on p. Let t
and t′ denote ti|pqr

and ti+1|pqr
respectively. Let u

be the orthogonal projection of p onto line qr.

Consider the causality constraint (Equation 3). We
will consider two cases separately: (i) t(u) ≥ t(q), and
(ii) t(u) < t(q).

Case 1: t(u) ≥ t(q) ≥ t(p) See Figure 4(b)–(c). In
this case, we have

t′(p) = t(p) + δt

≤ t(u) + δt

≤ t(u) + εσminwmin

≤ t(u) + εσ(P ′QR)|up|

because |up| ≥ wmin and σ(P ′QR) ≥ σmin. Since 0 <
ε ≤ 1

2
we have ε ≤

p

1 − (1 − ε)2. Therefore,

t′(p) ≤ t(u) + |up|
p

1 − (1 − ε)2σ(P ′QR)

= t(u) + |up|
p

σ(P ′QR)2 − (1 − ε)2σ2(P ′QR)

≤ t(u) + |up|
q

σ(P ′QR)2 − ‖∇ t|
qr
‖2

which is precisely the causality constraint of Equa-
tion 3. The last inequality follows because PQR is
progressive, hence ‖∇ t|

qr
‖ ≤ (1 − ε)σ(P ′QR)φp ≤

(1 − ε)σ(P ′QR).

Case 2: t(u) < t(q) See Figure 4(a). Let β =
|uq|/|up|. Since |uq| 6= 0, we have

t′(p) − t(u)

|up| =
t′(p) − t(q)

|up| +
t(q) − t(u)

|uq|
|uq|
|up|

=
t′(p) − t(q)

|up| + β‖∇ t|
qr
‖ (5)

Using Equation 5, the causality constraint (Equa-
tion 3) can be rewritten as

t′(p) − t(q)

|up| ≤
q

σ(P ′QR)2 − ‖∇ t|
qr
‖2

− β‖∇ t|
qr
‖ (6)

Since ti is progressive, we have ‖∇ t|
qr
‖ ≤ (1 −

ε)σ(P ′QR)φp. Substituting this upper bound on
‖∇ t|

qr
‖ into Equation 6, we obtain the following con-

straint:

t′(p) − t(q)

|up| ≤ σ(P ′QR)

„

q

1 − (1 − ε)2φ2
p

«

− σ(P ′QR)(1 − ε)βφp (7)

which implies the causality constraint of Equation 6.
Now,

t′(p) − t(q)

|up| ≤ t′(p) − t(p)

|up|
≤ εσminwmin

|up|
≤ εσmin.

Since σmin ≤ σ(P ′QR), Equation 7 is satisfied if

ε ≤
q

1 − (1 − ε)2φ2
p − (1 − ε)βφp

or equivalently

(ε + (1 − ε)βφp)2 + (1 − ε)2φ2
p ≤ 1

We have

(ε + (1 − ε)βφp)2+(1−ε)2φ2
p = 1+2ε(1−ε) (βφp − 1)

We have φp = sin ∠pqr = |up|/|pq| > |up|/|pr| =
sin ∠prq and β = |uq|/|up|. Since |uq| < |pq|, we have
βφqr < 1. Therefore, Equation 7 is satisfied.

Theorem 5. If a front t is progressive, then for any
local minimum vertex p and for every δt ∈ [0, Tmin] the
front t′ = next(t, p, δt) is progressive.

Proof. Since only the triangles of the front incident
on P advance along with p, we can restrict our atten-
tion to an arbitrary triangle pqr incident on p. Let t
and t′ denote ti|pqr

and ti+1|pqr
respectively. Let u

be the orthogonal projection of p onto line qr. Let
σprog denote σ(P ′Q′R) where P ′ = (p, t(p) + δt) and
Q′ = (q, t(q) + Tmin).

We separate the analysis into three cases depending
on which, if any, of the angles ∠pqr and ∠prq of 4pqr
is obtuse.

Case 1: Both ∠pqr and ∠prq are non-obtuse.
See Figure 4(b). In this case, we have t(u) ≥
t(q) ≥ t(p) and ~nqr · ~nrp ≤ 0. Let α =
p

1 − (~nqr · ~nrp)2. Hence, sin ∠qrp = α = |up|/|pr|
and ~nqr · ~nrp = −

√
1 − α2 = −|ur|/|pr|. Also, φq =

max {sin ∠qrp, sin ∠qpr}.

Therefore, the progress constraint of Equation 4 can
be rewritten as follows:

t′(p)−t(u)
|up|

≤ (1 − ε)σ(P ′Q′R)max{sin ∠qrp,sin ∠qpr}
sin ∠qrp

+ |ur|
|up|

‖∇ t|
qr
‖

(8)
We have

t′(p) − t(u)

|up| ≤ t′(p) − t(p)

|up| ≤ εσminwmin

|up| ≤ εσmin.

Since ε ≤ 1
2
, we have ε ≤ 1−ε; also, σmin ≤ σ(P ′Q′R);

hence,

εσmin ≤ (1 − ε)σ(P ′Q′R)

≤ (1 − ε)σ(P ′Q′R)
max{sin ∠qrp, sin ∠qpr}

sin ∠qrp

≤ (1 − ε)σ(P ′Q′R)
max{sin ∠qrp, sin ∠qpr}

sin ∠qrp

+
|ur|
|up| ‖∇ t|

qr
‖

Therefore, the progress constraint of Equation 8 is sat-
isfied.

Case 2: ∠pqr is obtuse. See Figure 4(a). In this
case, we have t(u) < t(q) and ~nqr · ~nrp ≤ 0. Let α =
p

1 − (~nqr · ~nrp)2. Hence, sin ∠qrp = α = |up|/|pr|
and ~nqr · ~nrp = −

√
1 − α2 = −|ur|/|pr|.

Let β = |uq|/|up|. Since |uq| 6= 0, we have

t′(p) − t(u)

|up| =
t′(p) − t(q)

|up| +
t(q) − t(u)

|uq|
|uq|
|up|

=
t′(p) − t(q)

|up| + β‖∇ t|
qr
‖

Therefore, the progress constraint of Equation 4 can
be rewritten as follows:

t′(p)−t(q)
|up|

≤ (1 − ε)σ(P ′Q′R)max{sin ∠qrp,sin ∠qpr}
sin ∠qrp

+
“

|ur|
|up|

− β
”

‖∇ t|
qr
‖

(9)
We have

t′(p) − t(q)

|up| ≤ t′(p) − t(p)

|up| ≤ εσminwmin

|up| ≤ εσmin.

Since ε ≤ 1
2
, we have ε ≤ 1−ε; also, σmin ≤ σ(P ′Q′R);

hence,

εσmin ≤ (1 − ε)σ(P ′Q′R)

≤ (1 − ε)σ(P ′Q′R)
max{sin ∠qrp, sin ∠qpr}

sin ∠qrp

≤ (1 − ε)σ(P ′Q′R)
max{sin ∠qrp, sin ∠qpr}

sin ∠qrp

+

„

|ur|
|up| − β

«

‖∇ t|
qr
‖

Therefore, the progress constraint of Equation 9 is
satisfied. The last inequality follows because β =
|uq|/|up| < |ur|/|up|.

Case 3: ∠prq is obtuse. See Figure 4(c). In this
case, we have t(u) ≥ t(r) ≥ t(q) ≥ t(p) and ~nqr ·~nrp >
0. Let α =

p

1 − (~nqr · ~nrp)2. Hence, sin ∠qrp = α =
|up|/|pr| and ~nqr · ~nrp =

√
1 − α2 = |ur|/|pr|.

Let β = |uq|/|up|. Since |uq| 6= 0, we have

t′(p) − t(u)

|up| =
t′(p) − t(q)

|up| +
t(q) − t(u)

|uq|
|uq|
|up|

=
t′(p) − t(q)

|up| − β‖∇ t|
qr
‖

Therefore, the progress constraint of Equation 4 can
be rewritten as follows:

t′(p)−t(q)
|up|

≤ (1 − ε)σ(P ′Q′R)max{sin ∠qrp,sin ∠qpr}
sin ∠qrp

+
“

β − |ur|
|up|

”

‖∇ t|
qr
‖

(10)

As before, we have

t′(p) − t(q)

|up| ≤ t′(p) − t(p)

|up| ≤ εσminwmin

|up| ≤ εσmin.

Since ε ≤ 1
2
, we have ε ≤ 1−ε; also, σmin ≤ σ(P ′Q′R);

hence,

εσmin ≤ (1 − ε)σ(P ′Q′R)

≤ (1 − ε)σ(P ′Q′R)
max{sin ∠qrp, sin ∠qpr}

sin ∠qrp

≤ (1 − ε)σ(P ′Q′R)
max{sin ∠qrp, sin ∠qpr}

sin ∠qrp

+

„

β − |ur|
|up|

«

‖∇ t|
qr
‖

Therefore, the progress constraint of Equation 10 is
satisfied. The last inequality follows because β =
|uq|/|up| > |ur|/|up|.

Theorem 6. For any i ≥ 0, if the front ti is progres-
sive then ti is valid.

The proof is almost identical to that of Theorem 2.

3.3 Being greedy

We would like to maximize the progress at each step in
a greedy fashion, i.e., given a front ti we would like to
maximize ti+1(p) where ti+1 = next(ti, p, δt) subject
to the constraint that ti+1 is causal. For a fixed trian-
gle pp1p2. . .pd incident on p let T i+1

sup denote sup {T :
P ′QR is causal and progressive, where P ′ = (p, T) and
P ′

1 = (p1, ti(p1) + Tmin}. To maximizing the progress
at step i + 1, we would like to compute T i+1

sup . Sim-
ilar to the 1D×Time case, partition the set of cones
of influence from points on the front ti into local and
remote subsets. Let σlocal denote the smallest slope
among all local cones of influence. The triangle P ′QR
is causal only if its slope is less than or equal to σlocal.
Let Tlocal be the maximum time value of P ′ for which
the slope of P ′QR is less than or equal to σlocal. The
maximum Tlocal exists because the set of allowed val-
ues of T where P ′ = (p, T) is closed and therefore
compact. To compute Tlocal we substitute σlocal in the
condition for causality of P ′QR.

Unlike the 1D×Time case, it is not clear that T i+1
sup can

be computed by ray shooting queries. In 2D×Time, we
need an oracle to determine which among several right
circular cones is intersected first by a triangle P ′Q′R
when the vertex P of 4PQR is lifted to P ′ = (p, T)
while also lifting Q to Q′ = (q, t(q) + Tmin). However,
just as for the 1D×Time case, we can approximate
T i+1

sup up to any given numerical accuracy by perform-
ing a binary search in the interval [ti(p) + Tmin, Tlocal]
which we know contains T i+1

sup . Therefore, the eventual

height of the tentpole PP ′ is at least max{Tmin, T i+1
sup −

η} where η > 0 is the desired numerical accuracy.

We thus have the following theorem.

Theorem 7. Given a triangulation M of a bounded
planar space domain where wmin is the minimum
width of a simplex of M and σmin is the mini-
mum slope anywhere in M × [0,∞), for every ε
such that 0 < ε ≤ 1

2
our algorithm constructs

a simplicial mesh of M × [0, T] consisting of at

most
l

diam(M) σmax ∆(M)
εσminwmin

T
m

spacetime elements for ev-

ery real T ≥ 0.

Proof. By Theorems 4 and 5, it follows that the height
of each tentpole constructed by the algorithm is at
least Tmin = εσminwmin. By Theorem 6, after con-

structing at most k ≤
l

diam(M) σmax

Tmin

T
m

patches, the

entire front tk is past the target time T . Since each
patch consists of at most ∆(M) elements, the theorem
follows.

4. CONCLUSION

We have shown how to extend the Tent Pitcher al-
gorithm for planar and linear spatial domains to the
case of changing wavespeeds. Our expressions for the
causality and progress constraints that apply at each
step make explicit the dependence on the slope of the
cone of influence most constraining the progress at
that step. This dependence is not explicit in the for-
mulæ of Erickson et al. because they assume without
loss of generality that the slope is 1 everywhere in
spacetime. For the constant wavespeed case, the algo-
rithm in this paper is an alternative to the algorithm
due to Erickson et al. with potentially weaker progress
constraints. We can view the algorithm of Erickson et

al. as looking one step ahead in the sense that the
progress constraint at step i guarantees that the front
constructed in step i + 1 is causal. Our algorithm
can be viewed as looking one step even further—our
progress constraint at step i guarantees that the front
constructed in step i + 2 is causal. In a relatively
straightforward manner, we can generalize this idea to
looking at step i to the front in step i + h where h is
a horizon parameter that can be chosen adaptively by
the algorithm. It needs to be investigated whether the
extra complexity of the algorithm for h > 2 is justified
by a more efficient meshing algorithm overall.

We have preliminary experimental results in 1D×Time
and a prototype with simulated physics in 2D×Time;
more substantial empirical study is required and we
expect to report results of such a study soon. One of
the objectives of the study will be to explore different
heuristics to choose which local minimum vertex to
pitch at every step. Some heuristics, such as pitching

Figure 5: An unstructured triangular spacetime mesh
over a 1D uniform space mesh. The space dimension
is horizontal and time increases upwards. The slope at
any point in spacetime is one of three distinct values:
the minimum slope occurs in a band around the diagonal
where the tentpoles are shortest; beyond a certain time
value, the maximum slope occurs everywhere.

the local minimum with the minimum slope (highest
wavespeed), perform better than others. We have an
extension to the current algorithm that allows pitch-
ing at any vertex, not necessarily a local minimum.
However, the extended algorithm is more complicated
and it is not clear if the expected gains will be worth
the extra computation time.

Figures 5 and 6 illustrate spacetime meshes con-
structed by our prototype implementation over 1D and
2D space meshes respectively. The 1D×Time space-
time mesh was constructed by pitching an indepen-
dent set of local minima in non-increasing order of
wavespeed. In other words, the algorithm preferred
to pitch local minima adjacent to points on the front
where the wavespeed was maximum (slope was mini-
mum). The 2D×Time mesh was constructed by pitch-
ing a global minimum at every step. In either example,
many more spacetime elements would be required to
mesh the same volume if the height of every tentpole
were constrained by the globally minimum slope.

In higher dimensions, we have a theorem identical to
Theorem 7 when every dihedral angle of every simplex
is non-obtuse. We anticipate soon an analogous the-
orem for arbitrary dimensional space domains in the
presence of obtuse angles.

Figure 6: An unstructured tetrahedral spacetime mesh
over a triangulated uniform 2D grid. Time increases up-
wards. The slope at any point in spacetime is one of two
distinct values: the minimum slope occurs inside a circu-
lar cone where the tentpoles are shortest, the maximum
slope occurs everywhere else.

Our algorithm can be modified to handle asymmet-
ric cones, such as due to wave propagation through
anisotropic media. In the presence of anisotropy, the
most limiting cone constraint can be nonlocal.

In a recent paper, Abedi et al. [1] extend TentPitcher
to support another kind of adaptivity, where the size
of the spacetime elements is adapted to a posteriori

estimates of the numerical error. Abedi et al. apply
hierarchical refinement and coarsening of the underly-
ing one- or two-dimensional space mesh to adapt the
spatial size of future spacetime elements. They extend
the progress constraints of Erickson et al. to antici-
pate future refinement and coarsening both of which
change the shape of the elements on the front. The
outstanding problem that we plan to consider next is
to combine adaptivity to changing wavespeeds with
refinement and coarsening for the case of planar space
domains. It is quite straightforward to combine the
progress constraints in this paper with those of Abedi
et al. to support refinement in the presence of chang-
ing wavespeeds. Coarsening can be done safely if each
triangle after coarsening satisfies progress constraint
[σmin]. When coarsening is possible only under such
strict constraints, we need to carefully prioritize each
coarsening step so that the front is only as refined as
necessary and not much more.

Our research group is also implementing a parallel ver-
sion of Tent Pitcher to run on multiple processors. The
nonlocal nature of the constraints pose significant chal-
lenges in the parallel setting.

In many problems, the geometry of the space domain
changes over time. There may also be internal bound-
aries between different parts of the domain, e.g., sep-

arating two distinct materials with different physical
properties, and these internal boundaries may evolve
over time. We would like to handle moving boundaries
both internal and external.

Acknowledgments The author would like to
thank the other members of the CPSD spacetime
meshing group, especially Jeff Erickson, Yong Fan,
Robert Haber, Mark Hills, and Jayandran Palaniap-
pan. Thanks also to the anonymous referee, whose
comments were especially useful.

References

[1] Abedi R., Chung S.H., Erickson J., Fan Y., Gar-
land M., Guoy D., Haber R., Sullivan J.M., Thite
S., Zhou Y. “Spacetime Meshing with Adaptive
Refinement and Coarsening.” Proc. 20th Symp.
Computational Geometry, pp. 300–309. June 2004

[2] Barnes J.E., Hut P. “A Hierarchical O(NLogN)
Force Calculation Algorithm.” Nature, vol. 324,
no. 4, 446–449, December 1986

[3] Cockburn B., Karniadakis G., Shu C. Discontin-
uous Galerkin methods: theory, computation and
applications, vol. 11 of Lecture Notes in Compu-
tational Science and Engineering. Springer, 2000

[4] Erickson J., Guoy D., Sullivan J.M., Üngör
A. “Building Space-Time Meshes over Arbi-
trary Spatial Domains.” Proc. 11th Int’l. Meshing
Roundtable, pp. 391–402. 2002

[5] Guttman A. “A Dynamic Index Structure for
Spatial Searching.” Proc. ACM SIGMOD Conf.
Principles Database Systems, pp. 47–57. 1984

[6] Lin M., Manocha D., Cohen J., Gottschalk S. Al-
gorithms for Robotics Motion and Manipulation,
chap. Collision Detection: Algorithms and Appli-
cations, pp. 129–142. A.K. Peters, 1996

[7] Lowrie R.B., Roe P.L., van Leer B. “Space-Time
Methods for Hyperbolic Conservation Laws.”
Barriers and Challenges in Computational Fluid
Dynamics, vol. 6 of ICASE/LaRC Interdisci-
plinary Series in Science and Engineering, pp.
79–98. Kluwer, 1998

[8] Richter G.R. “An explicit finite element method
for the wave equation.” Applied Numerical Math-
ematics, vol. 16, 65–80, 1994

[9] Üngör A. Parallel Delaunay Refinement and
Space-Time Meshing. Ph.D. thesis, University of
Illinois at Urbana-Champaign, October 2002

[10] Üngör A., Sheffer A. “Tent-Pitcher: A Mesh-
ing Algorithm for Space-Time Discontinuous
Galerkin Methods.” Proc. 9th Int’l. Meshing
Roundtable, pp. 111–122. 2000

[11] Yin L., Acharya A., Sobh N., Haber R., Tortorelli
D.A. “A Space-time discontinuous Galerkin
method for elastodynamic analysis.” B. Cock-
burn, G. Karniadakis, C. Shu, editors, Lecture
Notes in Computational Science and Engineering,
vol. 11, pp. 459–464. Springer, 2000

